CS433: Internet of Things NCS463: Internet of Things

Dr. Ahmed Shalaby

http://bu.edu.eg/staff/ahmedshalaby14

Internet of Things – Architecture

Communications

Zigbee

- What are Zigbee?
- Zigbee Applications?
- Why Zigbee?
- Zigbee Architecture.
- Key Features of Zigbee.

Source: Zigbee

Zigbee

- Zigbee is a complete IoT solution ZigBee is an open, global, packetbased protocol designed to provide an easy-to-use architecture for secure, reliable, low power wireless networks.
- ZigBee is a technological standard created for controlling and sensing the network. ZigBee is based on IEEE 802.15.4 and is created by Zigbee Alliance.
- ZigBee is a Personal Area Network standard that addresses the need for very low-cost implementation of Low power devices with Low data rates for short-range wireless communications.
- The ZigBee Alliance explains the origin of the name as: "The technique that honey bees use to communicate new-found food sources to other members of the colony is referred to as the ZigBee Principle. Using this silent, but powerful communication system, whereby the bee dances in a zig-zag pattern, he is able to share information, such as the location, distance and direction of a newly discovered food source to its fellow colony members."

Zigbee Applications

ZigBee Remote Control

ZigBee Smart Energy

ZigBee Health Care

ZigBee Retail Services

ZigBee Home Automation

ZigBee Building Automation

ZigBee Telecommunication Services

Zigbee (Why)

Zigbee (Why)

Zigbee (Why)

er

- ZigBee Alliance
- "the software"
- Network, Security & Application layers

1 zigbe

Certification & Logo Conformance

Application Layer Interoperability Network Stack Connectivity zigbee compliant platform^{*} IEEE 802.15.4 Radio

iabee certified produc

Brand management

IEEE 802.15.4

- "the hardware"
- Physical & Media Access Control layers

Zigbee Characteristics:

- Low cost.
- Easy to implement.
- Low power consumption.
- Supports up to 65,000 nodes.
- Supports mesh, tree and start networks.
- Low data rate. (20,40,250,1000) kbit per second.
- Star or Peer-to-Peer operation.
- low latency devices.
- CSMA-CA channel access.
- Dynamic device addressing.
- Fully handshaked protocol for transfer reliability.

Zigbee Frequencies and Data Rates:

Frequency Band	Frequency Range	Region	Release Year
868 MHz	868–868.6 MHz	European countries	2003-
915 MHZ	902–928 MHz	North America, Australia, and New Zealand	2006- (Modifications)
2.4GHz	2400–2483.5 MHz	World Wide	2007 (CSS, UWB)
780 MHz	779–787 MHz	China	
950 MHz	950–956 MHz	Japan	2009 (PHYs)

Zigbee Frequencies and Data Rates:

□ IEEE 802.15.4

- IEEE Std 802.15.4 is designed to be:
 - Short-range service without infrastructure.
 - Consume little power.
 - Low operating cost.
- How ?
 - Low Duty cycle (99% inactive ,standby mode, consume≈ zero power)
 - Modulation (modulation scheme is chosen to be highly efficient, enabling a low-cost implementation (DSSS, QPSK, BPSK)).
 - Quality of service (a simple full-handshake protocol to ensure reliable data transfer).

- IEEE 802.15.4 PHY Layer provides the interface with the physical medium and is in charge of:
 - Activation and deactivation of the radio transceiver.
 - Energy Detection (ED) within the current channel.
 - Link Quality Indicator (LQI) for received packets.
 - Clear Channel Assessment (CCA) determines whether the wireless medium is ready or busy.
 - Channel frequency selection.
 - Data transmission and reception.

- IEEE 802.15.4 added Chirp Spread Spectrum (CSS)
 - Each symbol is transmitted with a chirp pulse and a fixed time duration.

 $U_{C}(t)[V]$

- Pros
 - Robust against Noise and Multipath Fading
 - Most effective Utilization of the given Bandwidth
 - Simple Synchronization due to chirp pattern repetition
 - Low power consumption
 - Quality on Demand support
- Cons
 - Complexity
 - Hardware Implementation

Zigbee Architecture

Zigbee Architecture

Zigbee Architecture

- Full function device (FFD)
 - Any topology
 - Network coordinator capable
 - Talks to any other device
- Reduced function device (RFD)
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

Zigbee Architecture – Frame Structure

4 Types of MAC Frames

- Data Frame
- Acknowledgment Frame
- MAC Command Frame
- **Beacon Frame:** Transmitted by network coordinator. Contains network information, frame structure and notification of pending node messages.

Channel Access

 Contention Based Method (Carrier-Sense Multiple Access With Collision Avoidance Mechanism)

- Carrier sense (CA): The initial idea is that participants may only send data over the network if the transmission medium is free. The carrier status detection checks the channel at any time, and data is not sent until it's available.
- Multiple access (MA): Several stations share a transmission medium.
- Collision avoidance (CA): A schedule tries to ensure that two or more participants do not start a transmission at the same time to avoid collisions. If overlapping does occur, this will be detected, and the transmission will be tried again.
- Contention Free Method (Coordinator dedicates a specific time slot to each device (Guaranteed Time Slot (GTS)))
 - TDMA is the channelization protocol in which the bandwidth of the channel is divided into various stations on a time basis.

Channel Access

- if sense channel is idle for DIFS then transmit the entire frame (no CD).
- if sense channel busy then start a random backoff time timer counts down while channel idle, transmit when timer expires, if no ACK, increase random backoff interval, repeat.
- return ACK after **SIFS**.

Modes of Operation

Modes of Operation

LoRa vs. Zigbee

	LoRa	Zigbee
Specifications authority	LoRa Alliance	Zigbee Alliance
Year of development	2009	1998
Standard	IEEE 802.15.4	IEEE 802.15.4
Frequency band	863 to 870 MHz, 902 to 928 MHz, 915 to 928 MHz, 2.4 GHz worldwide	868MHz, 915 MHz, 2.4GHz
Transmission range	3 miles (4.7 km) in urban areas, 10 miles (16 km) or more in rural areas	10 to 100 meters
Power consumption	300 bps to 37.5 kbps	low
Data rate	lower compare to Zigbee	20 kbps (868 MHz), 40Kbps (915 MHz) , 250 kbps (2.4GHz)
Тороlоду	star	star, tree, peer-to-peer and mesh
Cost	low	middle
Application	used as Wide Area Network	used as LR-WPAN i.e. low rate wireless personal area network

Bluetooth

- Bluetooth wireless technology is an open specification for a low-cost, low-power, short-range radio technology for ad-hoc wireless communication of voice and data anywhere in the world.
- Bluetooth was invented by Ericsson in 1994. Originally conceived as a cable replacement technology.
- "King Harald Bluetooth (His dead tooth, which was a dark blue/grey color, and earned him the nickname Bluetooth.)...was famous for uniting Scandinavia just as we intended to unite the PC and cellular industries with a short-range wireless link."
- Bluetooth exchange works using short-wave radio, with radio bands ranging from 2.402 GHz to 2.480 GHz, and building a Personal Area Network (PAN). Typically, a master Bluetooth device can connect to a maximum of seven devices at a go.

Bluetooth Frequency Bands

Bluetooth, operating in 2.4 GHz ISM band

- employs 79 RF channels with 1 MHz spacing for Basic and Enhanced Data Rates (BR/EDR) transmissions: f=2402+k MHz, k=0,...,78
- and 40 RF channels with 2 MHz spacing for Low Energy (LE) transmissions: f=2402+k*2 MHz, k=0, ...,39 (LE).

Bluetooth Modulations

- Basic Rate:
 - Binary GFSK at 1 Msymbol/s
- Enhanced Date Rate:
 - p/4-DQPSK at 2 Msymbol/s
 - 8DPSK at 3 Msymbol/s
- Low Energy:
 - Binary GFSK with at 1 Msymbol/s

Bluetooth Layers

- The host controller interface (HCI) serves as the interface between the software part of the system and the hardware (i.e., the device driver).
- The L2CAP (logical link control and adaptation protocol) plays a central role in communication between the upper and lower layers of the Bluetooth stack. It keeps track of where data packets come from and where they should go.
- The service discovery protocol (SDP) is important to mention because it exists independently of other higher-level protocol layers. It provides the interface to the link controller and allows for interoperability between Bluetooth devices.

Bluetooth Architecture

• The architecture of Bluetooth defines two types of networks:

Before joining the piconet, each *Peripheral* node is in an advertiser role.

https://www.mathworks.com/help/bluetooth/gs/bluetooth-technology-overview.html

Bluetooth Frame Structure

Bluetooth Vs. Bluetooth LE.

Feature	Bluetooth Classic	Bluetooth Low Energy (BLE)			
Power consumption	High (approx 1W)	Low (approx 0.01W-0.5W)			
Communication Range	10m to 30m	10m to 30m			
Data Rate	1Mbps for BR 2-3Mbps for EDR	500kbps-1Mbps			
Modulation Technique	GFSK for BR 8-DPSK or π/4-DQPSK for EDR	GFSK			
RF Bandwidth	2.4 GHz ISM band (2400-2483.5 MHz)	2.4 GHz ISM band (2400-2483.5 MHz)			
Number of Channels	79 channels each of width 1Mhz	40 channels each of width 2MHz			
Spreading	Frequency Hopping Spread Spectrum (FHSS)	Frequency Hopping Spread Spectrum (FHSS)			
Data link layer protocol	Time Division Multiple Access (TDMA)	Time Division Multiple Access (TDMA)			
Error detection	8 bit CRC or 16 bit CRC, and ACKs	24 bit CRC, ACKs			
Maximum number of active slaves	7	Unlimited			

Bluetooth vs Bluetooth Low Energy - GeeksforGeeks

A comparative study of LPWAN technologies

Attribute	Bluetooth® Low Energy Technology	Wi-Fi	Z-Wave	IEEE 802.15.4 (Zigbee, Thread)	LTE-M	NB-IoT	Sigfox	LoRaWAN
Range	10 m – 1.5 km	15 m – 100 m	30 m - 50 m	30 m – 100 m	1 km – 10 km	1 km – 10 km	3 km – 50 km	2 km – 20 km
Throughput	125 kbps – 2 Mbps	54 Mbps – 1.3 Gbps	10 kbps – 100 kbps	20 kbps – 250 kbps	Up to 1 Mbps	Up to 200 kbps	Up to 100 bps	10 kbps – 50 kbps
Power Consumption	Low	Medium	Low	Low	Medium	Low	Low	Low
Ongoing Cost	One-time	One-time	One-time	One-time	Recurring	Recurring	Recurring	One-time
Module Cost	Under \$5	Under \$10	Under \$10	\$8-\$15	\$8-\$20	\$8-\$20	Under \$5	\$8-\$15
Тороlоду	P2P, Star, Mesh, Broadcast	Star, Mesh	Mesh	Mesh	Star	Star	Star	Star

https://www.bluetooth.com/blog/wireless-connectivity-options-for-iot-applications-technology-comparison

IoT wireless technologies

https://www.mokolora.com/lora-and-wireless-technologies